بررسی رنگ آمیزی بی دور گراف ها

پایان نامه
چکیده

یک یک k- رنگ آمیزی بی دور از گراف g یک k-رنگ آمیزی مجاز از g است به طوری که هر زیرگراف القایی g‎ روی دو کلاس رنگی دلخواه از g یک جنگل است. عدد رنگی بی دور یک گراف g مینیمم k‎ای است به طوری که g یک k-رنگ آمیزی بی دور داشته باشد. این پایان نامه، مروری بر پژوهش های انجام شده در رنگ آمیزی بی دور است.‎‎‎ در ابتدا عدد رنگی بی دور گراف هایی از جمله گراف های حاصل ضربی شامل شبکه ها، حاصل ضرب درخت ها، استوانه ها و چنبره ها را مورد مطالعه قرار داده ایم.‎‎ ‎ سپس رنگ آمیزی بی دور گراف های با ماکزیمم درچه ی 3، 4، 5، 6 ‎و بزرگتر از 7‎‎‎‎ را مورد بررسی قرار داده و در انتها خلاصه ای از نتایج دیگر به دست آمده در این راستا را خواهیم داشت.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

رنگ آمیزی پویای گراف ها

در این پایانامه سعی می کنیم به ارتباط بین عدد رنگی و عدد رنگی پویای گراف ها در حالت خاص بپردازیم, علاوه بر آن عدد رنگی پویای انتخابی(لیستی) را معرفی کرده و بعضی از نتایج آن را بیان می کنیم.

رنگ آمیزی پویای گراف ها

یک k رنگ آمیزی گراف g را رنگ آمیزی پویا می نامند, اگر در همسایه های هر رأس آن با حداقل درجه دو, حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k را به طوری کهg دارای یک k-رنگ آمیزی پویا باشد, عدد رنگی پویای g می نامند. در این پایان نامه به بررسی مفهوم رنگ آمیزی پویا, عدد رنگی پویای برخی گراف های خاص و کران بالای عدد رنگی پویا که در مقاله lai, h. j.,b. montgomery, h. poon, (2003), upper bounds ...

15 صفحه اول

رنگ آمیزی وقوع گراف ها

فرض کنیم (g=(v,eیک گراف ساده با مجموعه رئوس (v(gو مجموعه یال های (e(gباشد. vرارأسی دلخواه در gدر نظر میگیریم که واقع بر یال eباشد. زوج (v,e)را یک وقوع در گراف می نامیم. مجموعه ی همه ی وقوع ها در گراف را با(i(g نمایش می دهیم. دو وقوع مجزای (v,e) و (w,f)را در گراف مجاور گوییم هرگاه یکی از حالات زیر رخ دهد: الف) v=w: ب)e=f: ج)یال vw برابر با e یا f باشد. رنگ آمیزی وقوع در گراف را نگاشتی از مجموع...

15 صفحه اول

رنگ آمیزی همیلتونی گراف ها

برای رئوس u وv از گراف همبندg با مرتبه n، طول بلندترین u-v مسیر درg به وسیله d(u،v) نشان داده می شود. رنگ آمیزی هامیلتونی c از گرافg برچسب گذاری برای رئوس موسوم به رنگ است، به طوری که برای هر دو رأس متفاوت u وv از گرافg داشته باشیم: d(u،v)+|c(u)-c(v)|?n-1. مقدار hc(c) رنگ آمیزی هامیلتونی cاز گراف g، بیشترین رنگ اختصاص داده شده به یک رأس از g توسط c است، و عدد رنگی هامیلتونی g که آن را با hc(...

15 صفحه اول

رنگ آمیزی کامل گراف ها

در این رساله به بررسی گراف های تمام رنگ پذیر و خصوصیات آن ها می پرازیم. در بعضی از گراف های خاص درستی حدس رنگ آمیزی کلی را نشان می دهیم و کران های بالایی برای عدد رنگی کلی مطرح می کنیم. مبحث اصلی مورد مطالعه در این رساله، بررسی گراف های یکتا رنگ پذیر کلی می باشد. حدس مهمی که در این زمینه مطرح می شود دلالت بر این دارد که تنها گراف های تهی، مسیرها و دورهای از مرتبه ی 3k، k یک عدد طبیعی است، در رد...

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه زنجان - دانشکده علوم

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023